
research_report.md 2025-07-11

1 / 2

Research Report

Overview

This report demonstrates that asymptotic improvements to throughput and average latency for tabular XGBoost models is possible, with no

cost to precision and recall.

Dataset

Credit Card Transaction Dataset on Kaggle

The dataset contains 284807 transactions and 28 anonymized features, and the task is to classify each transaction as fraud or not.

Fraud is rare within the dataset (only 492 instances).

Methods

Given the data and the predictions, we analyze the data to find rules that when evaluated, only contain non-fraud data.

At runtime, if the transaction is detected as part of this group, we output "Not Fraud", otherwise we run the model as usual and use its

prediction.

This approach's efficacy in reducing latency depends on the time complexity of the model, how many transactions the rule can quickly detect

as not fraud, and how quickly the rule can operate.

Results

We trained an XGBoost model on this dataset from the library xgb, with n_estimators ranging from 30 to 1500 with a step size of 60 [30, 90,

150, ..., 1470].

In all observed cases [30, 1500] with a step size of 60, we observed consistent or improved precision and observed consistent recall (See

Table 1 in Appendix.).

Chosen arbitrarily to show specifics of speed-ups, (not from the above experiment), is n_estimators = 400:

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

research_report.md 2025-07-11

2 / 2

Metric Baseline Experimental Change

Time (ms) 235.906 ms 199.115 ms -15.6% latency

Queries per second (QPS) 1.207M 1.430M +18.4% throughput

Precision 0.934 0.934 --

Recall 0.685. 0.685 --

Limitations

Though this approach offers an off-the-shelf method to improve throughput of large models, it is currently limited in its efficacy to improve

throughput on already relatively fast models.

However, the rule is currently un-optimized for speed and further optimizations can be made to improve the recall of the rule, so there is a path

for improvement.

Contact me if you're interested in learning more.

Appendix

Table 1: shows how across n_estimators, precision and recall are maintained.

n_estimators baseline_precision experimental_precision baseline_recall experimental_recall recall_diff precision_diff

30 0.926829 0.938272 0.612903 0.612903 0 0.0114423

90 0.920455 0.931034 0.653226 0.653226 0 0.0105799

150 0.922222 0.932584 0.669355 0.669355 0 0.010362

210 0.923077 0.933333 0.677419 0.677419 0 0.0102564

270 0.933333 0.933333 0.677419 0.677419 0 0

330 0.933333 0.933333 0.677419 0.677419 0 0

390 0.933333 0.933333 0.677419 0.677419 0 0

450 0.933333 0.933333 0.677419 0.677419 0 0

510 0.933333 0.933333 0.677419 0.677419 0 0

570 0.933333 0.933333 0.677419 0.677419 0 0

630 0.933333 0.933333 0.677419 0.677419 0 0

690 0.933333 0.933333 0.677419 0.677419 0 0

750 0.933333 0.933333 0.677419 0.677419 0 0

810 0.933333 0.933333 0.677419 0.677419 0 0

870 0.934066 0.934066 0.685484 0.685484 0 0

930 0.933333 0.933333 0.677419 0.677419 0 0

990 0.934066 0.934066 0.685484 0.685484 0 0

1050 0.933333 0.933333 0.677419 0.677419 0 0

1110 0.934066 0.934066 0.685484 0.685484 0 0

1170 0.934066 0.934066 0.685484 0.685484 0 0

1230 0.934066 0.934066 0.685484 0.685484 0 0

1290 0.934066 0.934066 0.685484 0.685484 0 0

1350 0.934066 0.934066 0.685484 0.685484 0 0

1410 0.934066 0.934066 0.685484 0.685484 0 0

1470 0.934066 0.934066 0.685484 0.685484 0 0

