report.md 2025-07-31

Case Study: Accelerating a CNN on the MNIST dataset

The CNN architecture is used commonly in image-based machine learning (computer vision).

In this blog post, | demonstrate how you can use to make a classification model trained on MNIST
with run faster in inference, or more generally any architecture.
Dataset

Dataset: MNIST

This canonical dataset contains 28x28 images containing handwritten digits and the task is to predict the
digit (1-10) for each image. The train set contains 60000 images and the test set contains 10000 images.

Model

Model: CNN Model

Architecture:

self.model = nn.Sequential(
nn.Conv2d(1, 32, 3, 1), # 28x28 —> 26x26

nn.ReLU(),
nn.Conv2d(32, 64, 3, 1), # 26x26 —> 24x24
nn.ReLU(),
nn.MaxPoo12d(2), # 24x24 —> 12x12

nn.Flatten(),

nn.Linear(64 x 12 % 12, 128),
nn.ReLU(),

nn.Dropout(0.25),
nn.Linear(128, 10)

The model gets 97.48% accuracy on this dataset. The model takes 9.485 seconds to evaluate the entire
dataset of 60000 samples.

Accelerate it

Methods

We extract intermediate representations from the model.

Specifically, we extract representations from after the first ReLU layer, resulting in a vector of shape 60000
x 32 x 26 x 26. We do this because we observe through profiling that Conv2D-2, the second Conv-2D layer
is the performance bottleneck.

Then | flattened it to be a 60000 x 21632 sized matrix, and ran it through the analysis system to define
rules, that when activated isolated groups of data point sharing the same class designiation.

1/4

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_openml.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_openml.html

report.md 2025-07-31

With this rule defined, the way the model now works is the following:

e it runs the first Conv2D layer, then the ReLU layer.

e now given the output of the attention layer, it has a decision to make: the easy-data-classifier makes
a prediction. If the prediction is 1 then by design, the predicted class of the model is the value
associated with that rule, so the model early exits and predicts that value. If the prediction is O, the
rest of the model is run as normal.

Analytics Step

from moco import AnalyticsEngine

import numpy as np

import pickle as pkl

from moco import build_embeddings_from_predictions

array, preds_array = build_embeddings_and_predictions(m, data, 2)

np.save('train_layer_2_mnist.npy', array)
np.save('train_preds_mnist.npy', preds_array)
print("Done saving.")

array_flattened = array.reshape((array.shapel0], -1))
preds = preds_array.argmax(axis = 1)
ae = AnalyticsEngine(array_flattened, {'predictions': preds})
for ¢ in range(10):

rule, out = ae.compute_linear_sufficient_rule("predictions", c,
fit_on_val=True)

md = rule.metadata

with open(f'mnist_rule_{c}.pkl', 'wb') as f:

pkl.dump(md, f)

Now, using the rules we defined, we plug these rules into the , and process the data,
evaluating the difference in predictions from baseline to initial and the total latency for each rule
constructed.

from moco import BranchedNetwork
import torch

results = {}

for pred in range(10):
Load from moco.AnalyticsEngine, or cached from disk.
rule = load_rule(pred)
print(rule.class_, rule.decision_function_)
new_model = BranchedNetwork(m.model, layer = 2, rule = rule)
total_experimental_time = 0

2/4

report.md

bl time =

prediction_n []

prediction_o = []
total_shortcutted =

for i in tqdm(range(®, len(data),

)):

x = datali: 1 +].type(torch.FloatTensor)

start = time.time()

p_new, mask = new_model(x)
total_shortcutted += mask.sum()
prediction_n.append(p_new)

end = time.time()

total_experimental_time += end - start

start = time.time()
p_old = m.model(x)

end = time.time()

bl time += end - start

prediction_o.append(p_old)
end = time.time()
preds_old = torch.vstack(prediction_o)
preds_new = torch.vstack(prediction_n)

matchy = (preds_old.argmax(axis = 1))

results[pred] = {
'baseline_time': bl_time,

== (preds_new.argmax(axis

"experimental_time": total_experimental_time,

‘n_match' : matchy.float().mean(),

"total_shortcutted': total_shortcutted

df = pd.DataFrame.from_dict(results, orient = 'index')

df.to_markdown('mnist_results.md"')

Results

2025-07-31

))

For each class, 0-9, we run the algorithm to create a simple rule to predict that class. We see, as expected,

larger speed gains when the simple rules successfully picks up a large number of data points from within

that class. We see speed slow downs in the case of class = 5, where the rule only picked up on 1598 5's.

baseline_time experimental_time n_match

total_shortcutted

0 9.77313 8.48082 0.999983 5637
1 9.68577 8.03922 1 6304
2 8.69256 8.565458 1 4050
3 8.93277 8.72282 0.999983 4168
4 9.06341 8.73758 1 4510

3/4

report.md 2025-07-31

baseline_time experimental_time n_match total_shortcutted

5 8.74312 8.93458 1 1598
§) 9.21802 8.37652 0.999983 5240
7 8.90966 8.47124 0.999983 4804
8 8.78675 8.64843 0.999967 3569
9 9.0489 8.81263 0.999983 3561

Speedup as a function of the number of data points detected by the rule.

1.0004 ®

0.975 - o ®

0.950 - °
2 0.925 -
D
g []
A 0.900 -

0.875 -

0.850

0.825 A e

T T T T T
2000 3000 4000 5000 6000
Total Shortcutted

The rule associated with the 1-class is the best, resulting in a -17% latency improvement.

Conclusion

e We see clearly that can immediately accelerate CNN for edge and at-scale applications,

without risk of accuracy loss.
e We are improving the computational efficiency of ML models, which has additional implications for
energy savings, implicating running CNN on an edge device and saving battery.

474

